Stochastic algorithms for discontinuous multiplicative white noise
نویسندگان
چکیده
منابع مشابه
Stochastic algorithms for discontinuous multiplicative white noise.
Stochastic differential equations with multiplicative noise need a mathematical prescription due to different interpretations of the stochastic integral. This fact implies specific algorithms to perform numerical integrations or simulations of the stochastic trajectories. Moreover, if the multiplicative noise function is not continuous then the standard algorithms cannot be used. We present an ...
متن کاملPerturbation of Stochastic Boussinesq Equations with Multiplicative White Noise
The Boussinesq equation is a mathematics model of thermohydraulics, which consists of equations of fluid and temperature in the Boussinesq approximation.The deterministic case has been studied systematically by many authors (e.g., see [1– 3]). However, in many practical circumstances, small irregularity has to be taken into account.Thus, it is necessary to add to the equation a random force, wh...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملOn Multiplicative Noise Models for Stochastic Search
In this paper we investigate multiplicative noise models in the context of continuous optimization. We illustrate how some intrinsic properties of the noise model imply the failure of reasonable search algorithms for locating the optimum of the noiseless part of the objective function. Those findings are rigorously investigated on the (1 + 1)-ES for the minimization of the noisy sphere function...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2010
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.81.032104